Технологии производства солнечных батарей

04.02.2010
Технологии производства солнечных батарей

На сегодняшний день существует несколько технологий производства солнечных батарей, основанных на использовании того или иного материала при изготовлении пластины

Мировой вклад России в производство фотоэлектрических станций на сегодняшний день составляет не более 1%, тогда как солнечная фотоэнергетика является одной из наиболее быстро растущих отраслей мировой экономики (мировой темп роста – 30–50% в год). При этом в нашей стране пока еще нет лабораторий осуществляющих испытания и сертификацию солнечных элементов и модулей по международным стандартам. Поэтому для Европы Россия в смысле солнечной энергетики, пока является «белым пятном».

Стоит отметить, что солнечные батареи характеризуются рядом неоспоримых преимуществ:

  • фотоэлектрические электростанции (ФЭС) самые экологически чистые и легко возводимые, благодаря своей модульной конструкции;
  • ФЭС характеризует высокая надежность (до сих пор они являются источником питания практически для всех спутников на земной орбите, потому что работают без поломок и почти не требуют технического обслуживания);
  • низкие текущие расходы (благодаря отсутствию подвижных частей, ФЭС не требуют особого ухода);
  • экологичность (это бесшумные и чистые модули, при их работе не происходит сжигания топлива);
  • модульность (благодаря этому свойству, ФЭС могут достигать совершенно различных размеров, в зависимости от потребности в электроэнергии);
  • длительный срок службы (работают до 30 лет);
  • низкие затраты на строительство (обычно ФЭС строят близко к потребителю, т. е. нет нужды тянуть линии электропередач на дальние расстояния, не нужно закупать трансформаторы);
  • независимость ФЭС от изменения цен на энергоносители. 

Особенной популярностью солнечные батареи пользуются в южных странах, где их устанавливают непосредственно на крышах жилых домов. Можно назвать несколько крупных «солнечных парков»: «Солнечный парк» PEX в Испании на 30 МВт, способный обеспечить энергией до 16000 домов, «Солнечный парк» в Баварии на 11 МВт и в Лейпциге на 5 МВт, в Португалии – на 11 МВт, в Южной Корее на 4 МВт и в Израиле — на 100 МВт.

На сегодняшний день существует несколько технологий производства солнечных батарей, основанных на использовании того или иного материала при изготовлении пластины. Основано это на различном поглощении разными материалами солнечного излучения.

Среди широко используемых материалов можно назвать моно- и поликристаллический кремний, а также GaAs, CdTe, аморфный кремний и многие другие. В соответствии с выбранным материалом применяется определенная технология, которая отличается этапами производства и набором оборудования. 

Наиболее часто в качестве сырья используется моно- и поликристаллический кремний. КПД пластин на основе этого материала колеблется в пределах от 13 до 18% (в настоящее время ведущие производители солнечных батарей пытаются повысить КПД до 19%). Такие пластины очень хрупкие, требуют дополнительной защиты, но значительно дешевле пластин из других материалов. 

Тонкопленочная технология основана на использовании таких материалов, как CdTe, GaAs или аморфный кремний. КПД таких пластин также не превышает 20%, хотя в перспективе есть планы увеличения его до 22%. В зависимости от используемой подложки такие батареи могут гнуться, весьма устойчивы к механическим воздействиям, герметичны. Стоимость их выше стоимости кремниевых систем. 

На сегодняшний день производство солнечных батарей в промышленном масштабе наиболее рентабельно выполнять по кремниевой технологии, это наиболее изученная и дающая наивысший выход технология производства.

Ниже приведена схема производства солнечных батарей на основе мультикристаллического кремния. Данная цепочка складывается из следующих этапов:

  • Подготовка кремниевой пластины, очистка ее после резки, промывка;
  • Структурирование поверхности пластины, создание топологии на ее поверхности, травление;
  • Легирование, нанесение фосфора;
  • Диффузия фосфора, вжигание;
  • Создание P-n-перехода, изолирование его, удаление не нужных слоев;
  • Нанесение антиотражающего слоя SiN;
  • Металлизация (создание металлических контактов на обратной стороне пластины методом трафаретной печати);
  • Сушка и вжигание;
  • Создание контактов на лицевой стороне пластины;
  • Выравнивание пластины;
  • Проверка и тестирование.

Оборудование под каждый из этапов поставляют европейские и американские компании - RENA, Roth&Rau, DESPATCH, BACCINI, MANZ – одни из мировых лидеров по производству оборудования в сфере солнечной энергетики. 

Маркетиноговое исследование российского рынка солнечной энергетики

Источник: www.sovtest.ru
Все комментарии
Комментировать
Введите число, которое видите на картинке

Чистые технологии: